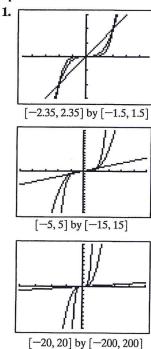
(b) Similarly

$$x_1 \cdot x_2 = \left(\frac{-b + \sqrt{b^2 - 4ac}}{2a}\right) \left(\frac{-b - \sqrt{b^2 - 4ac}}{2a}\right)$$
$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}$$

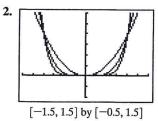
- 81. $f(x) = (x a)(x b) = x^2 bx ax + ab$ $= x^2 + (-a - b)x + ab$. If we use the vertex form of a quadratic function, we have $h = -\left(\frac{-a - b}{2}\right)$ $= \frac{a + b}{2}$. The axis is $x = h = \frac{a + b}{2}$.
- 82. Multiply out f(x) to get $x^2 (a + b)x + ab$. Complete the square to get $\left(x \frac{a+b}{2}\right)^2 + ab \frac{(a+b)^2}{4}$. The vertex is then (h, k) where $h = \frac{a+b}{2}$ and $k = ab \frac{(a+b)^2}{4} = -\frac{(a-b)^2}{4}$.
- 83. x_1 and x_2 are given by the quadratic formula $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$; then $x_1 + x_2 = -\frac{b}{a}$, and the line of symmetry is $x = -\frac{b}{2a}$, which is exactly equal to $\frac{x_1 + x_2}{2}$.

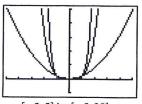
Section 2.2 Power Functions with Modeling

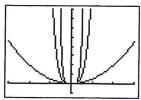
Exploration 1



The pairs (0,0), (1,1), and (-1,-1) are common to all three graphs. The graphs are similar in that if x < 0, f(x), g(x), and h(x) < 0 and if x > 0, f(x), g(x), and h(x) > 0. They are different in that if |x| < 1, f(x), g(x), and $h(x) \to 0$ at dramatically different rates, and if |x| > 1, f(x), g(x), and $h(x) \to \infty$ at dramatically different rates.







[-15, 15] by [-50, 400]

The pairs (0,0), (1,1), and (-1,1) are common to all three graphs. The graphs are similar in that for $x \neq 0$, f(x), g(x), and h(x) > 0. They are diffferent in that if |x| < 1, f(x), g(x), and $h(x) \to 0$ at dramatically different rates, and if |x| > 1, f(x), g(x), and $h(x) \to \infty$ at dramatically different rates.

Quick Review 2.2

- 1. $\sqrt[3]{x^2}$
- 2. $\sqrt{p^5}$
- 3. $\frac{1}{d^2}$
- 4. $\frac{1}{x^7}$
- 5. $\frac{1}{\sqrt[5]{q^4}}$
- 6. $\frac{1}{\sqrt{m^3}}$
- 7. $3x^{3/2}$
- 8. $2x^{5/3}$
- 9. $\approx 1.71x^{-4/3}$
- **10.** $\approx 0.71x^{-1/2}$

Section 2.2 Exercises

1. power = 5, constant =
$$-\frac{1}{2}$$

2. power =
$$\frac{5}{3}$$
, constant = 9

3. not a power function

4. power = 0, constant = 13

5. power = 1, constant = c^2

6. power = 5, constant = $\frac{k}{2}$

7. power = 2, constant = $\frac{g}{2}$, indep. variable = t

8. power = 3, constant = $\frac{4\pi}{3}$, indep. variable = r

9. power = -2, constant = k, indep. variable = d

10. power = 1, constant = m

11. degree = 0, coefficient = -4

12. not a monomial function; negative exponent

13. degree = 7, coefficient = -6

14. not a monomial function; variable in exponent

15. degree = 2, coefficient = 4π , indep. variable = r

16. degree = 1, coefficient = l, indep. variable = w

17.
$$A = ks^2$$

18. $V = kr^2$

19. I = V/R

20. V = kT

21. $E = mc^2$

22. $p = \sqrt{2gd}$

23. The weight w of an object varies directly with its mass m, with the constant of variation g.

24. The circumference C of a circle is proportional to its diameter D, with the constant of variation π .

25. The refractive index n of a medium is inversely proportional to v, the velocity of light in the medium, with constant of variation c, the constant velocity of light in free space.

26. The distance d traveled by a free-falling object dropped from rest varies directly with the square of its speed p, with the constant of variation $\frac{1}{2g}$.

27. $y = \frac{8}{x^2}$, power = -2, constant = 8

28. $y = -2\sqrt{x}$, power $=\frac{1}{2}$, constant =-2

29. (g)

30. (a)

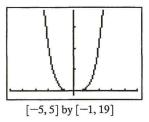
31. (d)

32. (g)

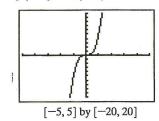
33. (h)

34. (d)

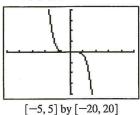
35. Start with $y = x^4$ and shrink vertically by $\frac{2}{3}$. Since $f(-x) = \frac{2}{3}(-x)^4 = \frac{2}{3}x^4$, f is even.



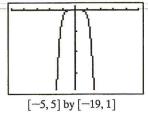
36. Start with $y = x^3$ and stretch vertically by 5. Since $f(-x) = 5(-x)^3 = -5x^3 = -f(x)$, f is odd.



37. Start with $y = x^5$, then stretch vertically by 1.5 and rotate across the x-axis. Since $f(-x) = -1.5(-x)^5 = 1.5x^5 = -f(x)$, f is odd.

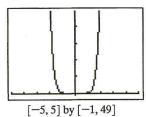


38. Start with $y = x^6$, then stretch vertically by 2 and rotate over the x-axis. Since $f(-x) = -2(-x)^6 = -2x^6 = f(x)$, f is even.



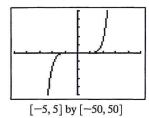
39. Start with $y = x^8$, then shrink vertically by $\frac{1}{4}$. Since

 $f(-x) = \frac{1}{4}(-x)^8 = \frac{1}{4}x^8 = f(x), f \text{ is even.}$



40. Start with $y = x^7$, then shrink vertically by $\frac{1}{8}$. Since

$$f(-x) = \frac{1}{8}(-x)^7 = -\frac{1}{8}x^7 = -f(x), f \text{ is odd.}$$



41. power = 4, constant = 2

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Continuous

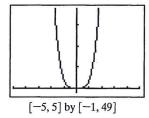
Decreasing on $(-\infty, 0)$. Increasing on $(0, \infty)$.

Even. Symmetric with respect to y-axis.

Bounded below, but not above

Local minimum at x = 0.

End Behavior: $\lim_{x \to \infty} 2x^4 = \infty$, $\lim_{x \to \infty} 2x^4 = \infty$



42. power = 3, constant = -3

Domain: $(-\infty, \infty)$

Range: $(-\infty, \infty)$

Continuous

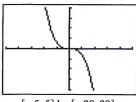
Decreasing for all x

Odd. Symmetric with respect to origin

Not bounded above or below

No local extrema

End Behavior: $\lim_{x \to -\infty} -3x^3 = \infty$, $\lim_{x \to \infty} -3x^3 = -\infty$



$$[-5, 5]$$
 by $[-20, 20]$

43. power = $\frac{1}{4}$, constant = $\frac{1}{2}$

Domain: $[0, \infty)$

Range: $[0, \infty)$

Continuous

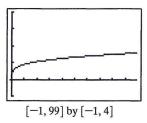
Increasing for all x

Bounded below

Neither even nor odd

Local minimum at (0,0)

End Behavior: $\lim_{x \to \infty} \frac{1}{2} \sqrt[4]{x} = \infty$



44. power = -3, constant = -2

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, 0) \cup (0, \infty)$

Discontinuous at x = 0

Increasing on $(-\infty, 0)$. Increasing on $(0, \infty)$.

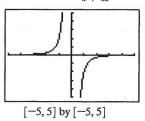
Odd. Symmetric with respect to origin

Not bounded above or below

No local extrema

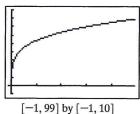
Asymptote at x = 0.

End Behavior: $\lim_{r \to -\infty} -2x^{-3} = 0$, $\lim_{r \to \infty} -2x^{-3} = 0$.



45. $k = 3, a = \frac{1}{4}$. In the first quadrant, the function is

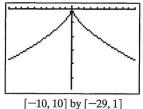
increasing and concave down. f is undefined for x < 0.



46. k = -4, $a = \frac{2}{3}$. In the fourth quadrant, the function is

decreasing and concave up. $f(-x) = -4(\sqrt[3]{(-x)^2})$

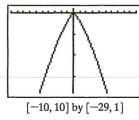
$$=-4\sqrt[3]{x^2}=-4x^{\frac{2}{3}}=f(x)$$
, so f is even.



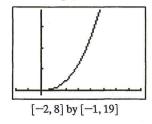
47. k = -2, $a = \frac{4}{3}$. In the fourth quadrant, f is decreasing

and concave down. $f(-x) = -2(\sqrt[3]{(-x)^4})$

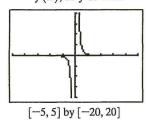
 $-2(\sqrt[3]{x^4}) = -2x^{\frac{4}{3}} = f(x)$, so f is even.



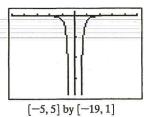
48. $k = \frac{2}{5}$, $a = \frac{5}{2}$. In the first quadrant, f is increasing and concave up. f is undefined for x < 0.



49. $k = \frac{1}{2}, a = -3$. In the first quadrant, f is decreasing and concave up. $f(-x) = \frac{1}{2}(-x)^{-3} = \frac{1}{2(-x)^3} = -\frac{1}{2}x^{-3} = -f(x)$, so f is odd.



50. k = -1, a = -4. In the fourth quadrant, f is increasing and concave down. $f(-x) = -(-x)^{-4} = -\frac{1}{(-x)^4}$ $= -\frac{1}{x^4} = -x^{-4} = f(x), \text{ so } f \text{ is even.}$



51.
$$V = \frac{kT}{P}$$
, so $k = \frac{PV}{T} = \frac{(0.926 \text{ atm})(3.46 \text{ L})}{302^{\circ}\text{K}}$
= $0.0106 \frac{\text{atm-L}}{\text{K}}$

At
$$P = 1.452$$
 atm, $V = \frac{\left(\frac{0.0106 \text{ atm-L}}{\text{K}}\right)(302^{\circ}\text{K})}{1.452 \text{ atm}}$
= 2.21 L

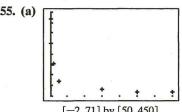
52.
$$V = kPT$$
, so $k = \frac{V}{PT} = \frac{(3.46 \text{ L})}{(0.926 \text{ atm})(302 \text{ °K})}$
 $= 0.0124 \frac{L}{\text{atm-K}}$
At $T = 338 \text{ °K}$, $V = \left(0.0124 \frac{L}{\text{atm-K}}\right) (0.926 \text{ atm})$
 $(338 \text{ °K}) = 3.87 \text{ L}$

53.
$$n = \frac{c}{v}$$
, so $v = \frac{c}{n} = \frac{\left(\frac{3.00 \times 10^8 \text{ m}}{\text{sec}}\right)}{2.42} = 1.24 \times 10^8 \frac{\text{m}}{\text{sec}}$

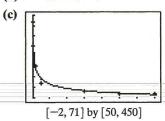
54.
$$P = kv^3$$
, so $k = \frac{P}{v^3} = \frac{15 \text{ w}}{(10 \text{ mph})^3} = 1.5 \times 10^{-2}$

Wind Speed (mph)	Power (W)
10	15
20	120
40	960
80	7680

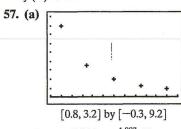
Since $P = kv^3$ is a cubic, power will increase significantly with only a small increase in wind speed.



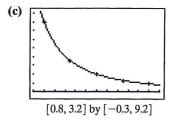
(b) $r \approx 231.204 \cdot w^{-0.297}$



- (d) Approximately 37.67 beats/min, which is very close to Clark's observed value.
- 56. Given that n is an integer, $n \ge 1$: If n is odd, then $f(-x) = (-x)^n = -(x^n) = -f(x)$ and so f(x) is odd. If n is even, then $f(-x) = (-x)^n = x^n = f(x)$ and so f(x) is even.



(b) $y \approx 7.932 \cdot x^{-1.987}$; Yes



- (d) Approximately 2.76 $\frac{W}{m^2}$ and 0.697 $\frac{W}{m^2}$, respectively.
- **58.** True. $f(-x) = (-x)^{-2/3} = [(-x)^2]^{-1/3}$ $=(x^2)^{-1/3}=x^{-2/3}=f(x)$
- **59.** False. $f(-x) = (-x)^{1/3} = -(x^{1/3}) = -f(x)$ and so the function is odd. It is symmetric about the origin, not the y-axis.
- **60.** $f(4) = 2(4)^{-1/2} = \frac{2}{4^{1/2}} = \frac{2}{\sqrt{4}} = \frac{2}{2} = 1.$ The answer is (a).
- **61.** $f(0) = -3(0)^{-1/3} = -3 \cdot \frac{1}{0^{1/3}} = -3 \cdot \frac{1}{0}$ is undefined.

Also,
$$f(-1) = -3(-1)^{-1/3} = -3(-1) = 3$$
,

$$f(1) = -3(1)^{-1/3} = -3(1) = -3$$
, and

$$f(3) = -3(3)^{-1/3} \approx -2.08$$
. The answer is (e).

- **62.** $f(-x) = (-x)^{2/3} = [(-x)^2]^{1/3} = (x^2)^{1/3} = x^{2/3} = f(x)$ The function is even. The answer is (b).
- **63.** $f(x) = x^{3/2} = (x^{1/2})^3 = (\sqrt{x})^3$ is defined for $x \ge 0$. The answer is (b).
- 64. Answers will vary. In general, however, students will find

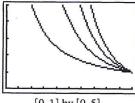
n even:
$$f(x) = k \cdot x^{\frac{m}{n}} = k \cdot \sqrt[n]{x^m}$$
, so *f* is undefined for $x < 0$.

$$m$$
 even, n odd: $f(x) = k \cdot x^{\frac{m}{n}} = k \cdot \sqrt[n]{x^m}$; $f(-x)$

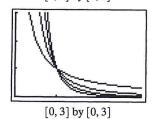
$$= k \cdot \sqrt[n]{(-x)^m} = k \cdot \sqrt[n]{x^m} = f(x)$$
, so f is even.

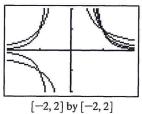
m odd, n odd:
$$f(x) = k \cdot x^{\frac{m}{n}} = k \cdot \sqrt[n]{x^m}; f(-x)$$
$$= k \cdot \sqrt[n]{(-x)^m} = -k \cdot \sqrt[n]{x^m}$$
$$= -k \cdot x^{\frac{m}{n}} = -f(x), \text{ so } f \text{ is odd.}$$

65. (a)

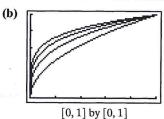


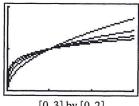
$$[0,1]$$
 by $[0,5]$



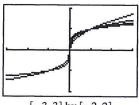


The pair (1, 1) is common to all four functions. The functions are similar in that each has an asymptote at x = 0 and as $x \to \pm \infty$, f(x), g(x), h(x) and $j(x) \to 0$. They are different in that when x < 0, f(x) and h(x) < 0, while g(x) and j(x) > 0. Also, as $x \to \pm \infty$, the functions $\rightarrow 0$ at dramatically different rates.



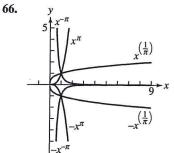


[0,3] by [0,2]



[-3, 3] by [-2, 2]

The pairs (0,0), (1,1) are common to all 4 functions. The graphs are alike in that when $x \to \infty$, $f(x), g(x), h(x), \text{ and } j(x) \to \infty$. The graphs are different, however, in that f(x) and h(x) do not exist (in the real plane) for x < 0. Also, as $x \to \infty$, $f(x), g(x), h(x), \text{ and } j(x) \rightarrow \infty \text{ at dramatically differ-}$ ent rates, while as $x \to -\infty$, g(x) and $j(x) \to -\infty$ at dramatically different rates.



 x^{π} : Since $\pi > 1$, x^{π} is increasing and concave up. $x^{\frac{1}{\pi}}$: Since $\frac{1}{\pi} < 1$, $x^{\frac{1}{\pi}}$ is increasing and concave down. $x^{-\pi}$: Since $x^{-\pi} = \frac{1}{x^{\pi}}$ and $\pi > 1, x^{-\pi}$ is decreasing and concave up. $-x^{\pi}$: Since $\pi > 1$, $-x^{\pi}$ is decreasing and concave down. $-x^{\frac{1}{\pi}}$: Since $\frac{1}{\pi} < 1, -x^{\frac{1}{\pi}}$ is decreasing and concave up. $-x^{-\pi}$: Since $-x^{-\pi} = -\frac{1}{x^{\pi}}$ and $\pi > 1, -x^{-\pi}$ is increasing and concave down.

67. Our new table looks like:

Table 2.10 (revised) Average Distances and Orbit Periods for the Six Innermost Planets

Planet	Average Distance from Sun (Au)	Period of Orbit (yrs)
Mercury	0.39	0.24
Venus	0.72	0.62
Earth	1	1
Mars	1.52	1.88
Jupiter	5.20	11.86
Saturn	9.54	29.46

Source: Shupe, Dorr, Payne, Hunsiker, et al., National Geographic Atlas of the World (rev. 6th ed.). Washington, DC: National Geographic Society, 1992, plate 116.

Using this new data, we find a power function model of: $y \approx 0.99995 \cdot x^{1.50115} \approx x^{1.5}$. Since y represents years, we set y = T and since x represents distance, we set x = athen, $y = x^{1.5} \rightarrow T = a^{3/2} \rightarrow (T)^2 = (a^{3/2})^2 \rightarrow T^2 = a^3$.

68. Using the free-fall equations from Section 2.1, we know that $s(t) = -\frac{1}{2}gt^2 + v_0t + s_0$. Therefore $d = s_0 - s$ $= s_0 - \left(-\frac{1}{2}gt^2 + v_0t + s_0 \right) = \frac{1}{2}gt^2 - v_0t.$

In this case, the initial velocity was zero, so $v_0 = 0$ and

$$d = \frac{1}{2}gt^2 - 0 \cdot t = \frac{1}{2}gt^2$$
. Solving for t we have $t = \sqrt{\frac{2d}{g}}$.

Then, $p = gt = g. \frac{\sqrt{2d}}{\sqrt{g}} = \sqrt{2gd}$. Yes.

69. If f is even, f(x) = f(-x), so $\frac{1}{f(x)} = \frac{1}{f(-x)}$ $(f(x) \neq 0)$. Since $g(x) = \frac{1}{f(x)} = \frac{1}{f(-x)} = g(-x)$, g is

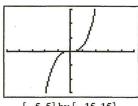
also even. If g is even, g(x) = g(-x), so $g(-x) = \frac{1}{f(-x)}$ $= g(x) = \frac{1}{f(x)}$. Since $\frac{1}{f(-x)} = \frac{1}{f(x)}$, f(-x) = f(x), and f is even. If f is odd, f(x) = -f(x), so $\frac{1}{f(x)} = -\frac{1}{f(x)}, f(x) \neq 0. \text{ Since } g(x) = \frac{1}{f(x)} = -\frac{1}{f(x)}$ = -g(x), g is also odd. If g is odd, g(x) = g(-x), so $g(-x) = \frac{1}{f(-x)} = -g(x) = -\frac{1}{f(x)}$. Since $\frac{1}{f(-x)} = -\frac{1}{f(x)}, f(-x) = -f(x), \text{ and } f \text{ is odd.}$

- **70.** f(x) is even if and only if $\frac{1}{f(x)}$ is also even. Using this result, $f(x) = k \cdot x^a$ is even if and only if $\frac{1}{f(x)} = \frac{1}{k \cdot x^a}$ $=\frac{1}{L}x^{-a}=k_2x^{-a}=g(x)$ is even $(f(x)\neq 0), f(x)$ is odd if and only if $\frac{1}{f(x)}$ is also odd. Using this result, $f(x) = k \cdot x^a$ is odd if and only if $\frac{1}{f(x)} = \frac{1}{k \cdot x^a} = \frac{1}{k} x^{-a}$
- $= k_3 x^{-a} = g(x)$ is odd $(f(x) \neq 0)$. 71. (a) The force F acting on an object varies jointly as the mass m of the object and the acceleration a of the
 - (b) The kinetic energy KE of an object varies jointly as the mass m of the object and square of the velocity v of the object.
 - (c) The force of gravity F acting on two objects varies jointly as the product m_1m_2 of the objects' masses and the inverse of the distance r between their centers, with the constant of variation G, the universal gravitational constant.

■ Section 2.3 Polynomial Functions of Higher Degree with Modeling

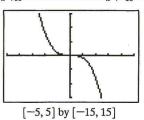
Exploration 1

1. (a)
$$\lim_{x \to \infty} 2x^3 = \infty$$
, $\lim_{x \to -\infty} 2x^3 = -\infty$



[-5, 5] by [-15, 15]

(b)
$$\lim_{x \to \infty} (-x^3) = -\infty$$
, $\lim_{x \to \infty} (-x^3) = \infty$



(c) $\lim_{r \to \infty} x^5 = \infty$, $\lim_{r \to -\infty} x^5 = -\infty$

