$x^{-\pi}$: Since $x^{-\pi} = \frac{1}{x^{\pi}}$ and $\pi > 1, x^{-\pi}$ is decreasing and concave up. $-x^{\pi}$: Since $\pi > 1$, $-x^{\pi}$ is decreasing and concave down. $-x^{\frac{1}{\pi}}$: Since $\frac{1}{\pi} < 1, -x^{\frac{1}{\pi}}$ is decreasing and concave up. $-x^{-\pi}$: Since $-x^{-\pi} = -\frac{1}{x^{\pi}}$ and $\pi > 1, -x^{-\pi}$ is increasing

and concave down. 67. Our new table looks like:

Table 2.10 (revised) Average Distances and Orbit Periods for the Six Innermost Planets

Planet	Average Distance from Sun (Au)	Period of Orbit (yrs)
Venus	0.72	0.62
Earth	1	1
Mars	1.52	1.88
Jupiter	5.20	11.86
Saturn	9.54	29.46

Source: Shupe, Dorr, Payne, Hunsiker, et al., National Geographic Atlas of the World (rev. 6th ed.). Washington, DC: National Geographic Society, 1992, plate 116.

Using this new data, we find a power function model of: $y \approx 0.99995 \cdot x^{1.50115} \approx x^{1.5}$. Since y represents years, we set y = T and since x represents distance, we set x = athen, $y = x^{1.5} \rightarrow T = a^{3/2} \rightarrow (T)^2 = (a^{3/2})^2 \rightarrow T^2 = a^3$.

68. Using the free-fall equations from Section 2.1, we know that $s(t) = -\frac{1}{2}gt^2 + v_0t + s_0$. Therefore $d = s_0 - s$ $= s_0 - \left(-\frac{1}{2}gt^2 + v_0t + s_0 \right) = \frac{1}{2}gt^2 - v_0t.$

In this case, the initial velocity was zero, so $v_0 = 0$ and

$$d = \frac{1}{2}gt^2 - 0 \cdot t = \frac{1}{2}gt^2$$
. Solving for t we have $t = \sqrt{\frac{2d}{g}}$.

Then,
$$p = gt = g. \frac{\sqrt{2d}}{\sqrt{g}} = \sqrt{2gd}$$
. Yes.

69. If f is even, f(x) = f(-x), so $\frac{1}{f(x)} = \frac{1}{f(-x)}$ $(f(x) \neq 0)$. Since $g(x) = \frac{1}{f(x)} = \frac{1}{f(-x)} = g(-x)$, g is

also even. If g is even, g(x) = g(-x), so $g(-x) = \frac{1}{f(-x)}$ $= g(x) = \frac{1}{f(x)}$. Since $\frac{1}{f(-x)} = \frac{1}{f(x)}$, f(-x) = f(x), and f is even. If f is odd, f(x) = -f(x), so $\frac{1}{f(x)} = -\frac{1}{f(x)}, f(x) \neq 0. \text{ Since } g(x) = \frac{1}{f(x)} = -\frac{1}{f(x)}$ = -g(x), g is also odd. If g is odd, g(x) = g(-x), so $g(-x) = \frac{1}{f(-x)} = -g(x) = -\frac{1}{f(x)}$. Since $\frac{1}{f(-x)} = -\frac{1}{f(x)}, f(-x) = -f(x), \text{ and } f \text{ is odd.}$

70.
$$f(x)$$
 is even if and only if $\frac{1}{f(x)}$ is also even. Using this result, $f(x) = k \cdot x^a$ is even if and only if $\frac{1}{f(x)} = \frac{1}{k \cdot x^a}$

$$= \frac{1}{k} x^{-a} = k_2 x^{-a} = g(x) \text{ is even } (f(x) \neq 0), f(x) \text{ is odd}$$
if and only if $\frac{1}{f(x)}$ is also odd. Using this result,
$$f(x) = k \cdot x^a \text{ is odd if and only if } \frac{1}{f(x)} = \frac{1}{k \cdot x^a} = \frac{1}{k} x^{-a}$$

$$= k_3 x^{-a} = g(x) \text{ is odd } (f(x) \neq 0).$$

- 71. (a) The force F acting on an object varies jointly as the mass m of the object and the acceleration a of the
 - (b) The kinetic energy KE of an object varies jointly as the mass m of the object and square of the velocity v of the object.
 - (c) The force of gravity F acting on two objects varies jointly as the product m_1m_2 of the objects' masses and the inverse of the distance r between their centers, with the constant of variation G, the universal gravitational constant.

■ Section 2.3 Polynomial Functions of Higher Degree with Modeling

Exploration 1

1. (a)
$$\lim_{x\to\infty} 2x^3 = \infty$$
, $\lim_{x\to-\infty} 2x^3 = -\infty$

[-5, 5] by [-15, 15]

(b)
$$\lim_{x \to \infty} (-x^3) = -\infty$$
, $\lim_{x \to \infty} (-x^3) = \infty$

(c)
$$\lim_{x\to\infty} x^5 = \infty$$
, $\lim_{x\to-\infty} x^5 = -\infty$

(d)
$$\lim_{x \to \infty} (-0.5x^7) = -\infty$$
, $\lim_{x \to -\infty} (-0.5x^7) = \infty$

2. (a)
$$\lim_{x \to \infty} (-3x^4) = -\infty$$
, $\lim_{x \to -\infty} (-3x^4) = -\infty$

(b)
$$\lim_{r \to \infty} 0.6x^4 = \infty$$
, $\lim_{r \to -\infty} 0.6x^4 = \infty$

(d)
$$\lim_{x\to\infty} (-0.5x^2) = -\infty$$
, $\lim_{x\to\infty} (-0.5x^2) = -\infty$

3. (a)
$$\lim_{x \to \infty} (-0.3x^5) = -\infty$$
, $\lim_{x \to -\infty} (-0.3x^5) = \infty$

(b)
$$\lim_{x \to \infty} (-2x^2) = -\infty$$
, $\lim_{x \to -\infty} (-2x^2) = -\infty$

(c)
$$\lim_{x\to\infty} 3x^4 = \infty$$
, $\lim_{x\to-\infty} 3x^4 = \infty$

(d)
$$\lim_{x \to \infty} 2.5x^3 = \infty$$
, $\lim_{x \to -\infty} 2.5x^3 = -\infty$

Exploration 2

1. $y = 0.0061x^3 + 0.0177x^2 - 0.5007x + 0.9769$ It is an exact fit, which we expect with only 4 data points!

2. $y = -0.375x^4 + 6.917x^3 - 44.125x^2 + 116.583x - 111$ It is an exact fit, exactly what we expect with only 5 data points!

Quick Review 2.3

1.
$$(x-4)(x+3)$$

2.
$$(x-7)(x-4)$$

3.
$$(3x-2)(x-3)$$

4.
$$(2x-1)(3x-1)$$

5.
$$x(3x-2)(x-1)$$

6.
$$2x(3x-2)(x-3)$$

7.
$$x = 0, x = 1$$

8.
$$x = 0, x = -2, x = 5$$

9.
$$x = -6$$
, $x = -3$, $x = 1.5$

10.
$$x = -6$$
, $x = -4$, $x = 5$

Section 2.3 Exercises

1. Start with $y = x^3$, shift to the right by 3 units, and then stretch vertically by 2. y-intercept: (0, -54)

2. Start with $y = x^3$, shift to the left by 5 units, and then reflect over the x-axis. y-intercept: (0, -125)

3. Start with $y = x^3$, shift to the left by 1 unit, vertically shrink by $\frac{1}{2}$, reflect over the x-axis, and then vertically

shift up 2 units. *y*-intercept:
$$\left(0, \frac{3}{2}\right)$$

4. Start with $y = x^3$, shift to the right by 3 units, vertically shrink by $\frac{2}{3}$, and vertically shift up one unit. y-intercept: (0, -17)

5. Start with $y = x^4$, shift to the left 2 units, vertically stretch by 2, reflect over the x-axis, and vertically shift down 3 units. y-intercept: (0, -35)

6. Start with $y = x^4$, shift to the right 1 unit, vertically stretch by 3, and vertically shift down 2 units. y-intercept: (0, 1)

7. local maximum: $\approx (0.79, 1.19)$, zeros: x = 0 and $x \approx 1.26$. The general shape of f is like $y = -x^4$, but near the origin, f behaves a lot like its other term, 2x. f is neither even nor odd.

8. local max at (0,0) and local minima at (1.12, -3.13) and (-1.12, -3.13), zeros: x = 0, $x \approx 1.58$, $x \approx -1.58$. f behaves a lot like $y = 2x^4$ except in the interval [-1.58, 1.58], where it behaves more like its second building block term, $-5x^2$.

- 9. Cubic function, positive leading coefficient. The answer
- 10. Cubic function, negative leading coefficient. The answer is (b).
- 11. Higher than cubic, positive leading coefficient. The answer
- 12. Higher than cubic, negative leading coefficient. The answer is (d).
- 13. One possibility:

[-100, 100] by [-1000, 1000]

14. One possibility:

15. One possibility:

16. One possibility:

For #17-24, when one end of a polynomial function's graph curves up into Quadrant I or II, this indicates a limit at ∞. And when an end curves down into Quadrant III or IV, this indicates a limit at $-\infty$.

$$\lim_{\substack{x \to \infty \\ x \to -\infty}} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$
$$\lim_{x \to -\infty} f(x) = \infty$$

[-10, 10] by [-100, 130]

$$\lim_{x \to \infty} f(x) = \infty$$
$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = \infty$$
$$\lim_{x \to -\infty} f(x) = \infty$$

22.

$$\lim_{x\to\infty}f(x)=\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

23.

$$\lim_{x\to\infty}f(x)=\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

24.

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

For #25-28, the end behavior of a polynomial is governed by the highest-degree term.

25.
$$\lim_{x \to \infty} f(x) = \infty$$
, $\lim_{x \to -\infty} f(x) = \infty$

26.
$$\lim_{x \to \infty} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = \infty$
27. $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = \infty$

27.
$$\lim_{x \to \infty} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = \infty$

28.
$$\lim_{x\to\infty} f(x) = -\infty$$
, $\lim_{x\to-\infty} f(x) = -\infty$

- 29. (a); There are 3 zeros: they are -2.5, 1, and 1.1.
- 30. (b); There are 3 zeros: they are 0.4, approximately 0.429 (actually 3/7), and 3.
- 31. (c); There are 3 zeros: approximately -0.273 (actually -3/11), -0.25, and 1.
- 32. (d); There are 3 zeros: -2, 0.5, and 3.

For #33-35, factor or apply the quadratic formula.

34. -2 and 2/3

35.
$$2/3$$
 and $-1/3$

For #36-38, factor out x, then factor or apply the quadratic formula.

37. 0, -2/3, and 1

38. 0, −1, and 2

39. degree: 3, zeros: x = 0 (one, crosses x-axis), x = 3(two, does not cross x-axis)

40. degree: 4, zeros: x = 0 (3, crosses x-axis), x = 2(one, crosses x-axis)

41. degree: 5, zeros: x = 1 (3, crosses x-axis), x = -2(two, does not cross x-axis)

42. degree: 6, zeros: x = 3 (2, does not cross x-axis), x = -5(4, does not cross x-axis)

43. zeros: -2.43, -0.74, 1.67

