Algebra 2
Names: \qquad
Group Quiz/ Review \qquad
\qquad

1. Explain what negative powers mean. Use examples to get your point across. Your explanation should be usable by someone who doesn't have a calculator.

A negative power means you have to find the reciprocal of the number before (or after) raising it to any other power. For example, $4^{-2}=\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$ and $\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
2. Explain what fractional powers mean (such as $\frac{1}{5}$ and $\frac{3}{2}$). Give examples to clearly illustrate your understanding. Again, your explanation should be usable by someone who doesn't have a calculator.

A fractional power means that you have to both raise a value to a power (the numerator) and take a root of the number (denominator). For example, $16^{\frac{3}{4}}=(\sqrt[4]{16})^{3}=2^{3}=8$. The 3 in the exponent is a power and the 4 is a root.
3. Graph each equation.
a) $y=-\sqrt{x+3}+5$

b) $y=\frac{1}{2}(x+2)^{2}-6$

c) $y=2 \sqrt[3]{x-1}-4$

4.

Jake was in a hurry when he did these problems. Did he make any mistakes? If so, find them and clearly show all corrections.
a)

$$
\begin{aligned}
& -3 \sqrt{x+4}-9=0 \\
& -3 \sqrt{x+4}=9 \\
& \sqrt{x+4}=-3 \\
& x+4=9 \\
& x=5
\end{aligned}
$$

You can list his mistake as one of two things:

1) He should have checked his answer to make sure it works. $-3 \sqrt{5+4}-9=-18 \neq 0$.
2) In step three $(\sqrt{x+4}=-3)$, when working with functions, the answer to a square root is always positive. This means at step 3, you can stop and say, "This is impossible which means there is no solution."
b)

$$
\begin{aligned}
& (2 x-7)^{3 / 2}-17=10 \\
& (2 x-7)^{3 / 2}=27 \\
& \left((2 x-7)^{3 / 2}\right)^{2 / 3}=(27)^{2 / 3} \\
& 2 x-7=18 \\
& 2 x=25 \\
& x=\frac{25}{2}
\end{aligned}
$$

The mistake is from line 3 to line 4 above.
$27^{\frac{2}{3}}=9 \neq 18$. The correct answer is $x=8$.
5. Sketch a graph of a radical function with a domain of $-2 \leq x$ and a range of $6 \geq y$. Write the equation of your graph.

The most common equation is $y=-\sqrt{x+2}+6$. It is VERY similar to 3a.
6. Ashley was tired and distracted when she did this problem. Did she make any mistakes? If so, find them and clearly show all corrections.

$$
\begin{aligned}
& \frac{\left(4 x y^{5}\right)^{2} \cdot x^{3} y^{-4}}{\left(2 x^{-2} y\right)^{3}} \\
& \frac{8 x^{2} y^{10} \cdot x^{3} y^{-4}}{2 x^{-6} y^{3}} \\
& \frac{8 x^{5} y^{6}}{2 x^{-6} y^{3}} \\
& \frac{4 y^{3}}{x}
\end{aligned}
$$

Ashley made two mistakes:

1) From line 1 to line $2,4^{2}=16$ (not 8$)$ AND $2^{3}=8$ (not
2).
2) From line 3 to line 4, $\frac{x^{5}}{x^{-6}}=x^{11}$ not $\frac{1}{x}$.

The correct answer should be $2 x^{11} y^{3}$.
7.

Two Jesse's were working together. They each did the following problem, but got different answers. Who is correct? How do you know?
a)

$$
\begin{aligned}
& \left(27 x^{\frac{3}{2}} y^{-\frac{1}{2}}\right)^{-\frac{2}{3}} \\
& -18 x^{-1} y^{\frac{1}{3}} \\
& \frac{-18 y^{\frac{1}{3}}}{x}
\end{aligned}
$$

b)
$\left(27 x^{\frac{3}{2}} y^{-\frac{1}{2}}\right)^{-\frac{2}{3}}$
$81 x^{-1} y^{\frac{1}{3}}$
$\frac{81 y^{\frac{1}{3}}}{x}$

They are both wrong because $27^{-\frac{2}{3}}=\frac{1}{9}$ (not -18 or 81).
8. Tanner would like to know how to simplify radical expressions. Describe how to simplify the following so that Tanner can clearly follow your directions.
a) $-2 \sqrt{8 x^{5} y^{10}}=-4 x^{2} y^{5} \sqrt{2 x}$
b) $4 \sqrt[4]{243 x^{11} y^{25}}=12 x^{2} y^{6} \sqrt[3]{3 x^{3} y}$

There are several ways to simplify these. The most basic (albeit not always the best) method involves a factor tree. For more details, consult your book, notes, or the internet.

