Calculus

Chapter 5 - Final Review

Learning Target: I can estimate the area under a curve using the sum of right- or left-hand rectangles.

Find the upper and lower sums for the region described using n rectangles.

1) The region bounded by the graph of $f(x)=x^{2}$ and the x-axis between $\mathrm{x}=0$ and $\mathrm{x}=2$.
2) The region bounded by the graph of $f(x)=8-x^{3}$ and the x-axis between $\mathrm{x}=0$ and $\mathrm{x}=2$.

Approximate the area of the region described using the given number of subintervals (of equal width).
3) The region bounded by the graph of $f(x)=\sqrt{x}$ and the x -axis between $\mathrm{x}=0$ and $\mathrm{x}=2$ using 4 righthand endpoint rectangles.
4) The region bounded by the graph of $f(x)=\sqrt{1-x^{2}}$ and the x -axis between $\mathrm{x}=0$ and $\mathrm{x}=1$ using 8 lefthand endpoint rectangles.
5) The region bounded by the graph of $f(x)=\frac{1}{x}$ and the x -axis between $\mathrm{x}=1$ and $\mathrm{x}=2$ using 5 righthand endpoint rectangles.

Learning Target: I can use integration to find area under the curve.

Find the area under the curve using the appropriate definite integral.

1) $f(x)=\sqrt{x},[0,4]$
2) $f(x)=4 \cos \pi x,\left[0, \frac{1}{2}\right]$
3) $f(x)=\frac{5}{x^{2}+1},[0,3]$
4) $f(x)=x-x^{2}$ in Q1
5) $f(x)=(3-x) \sqrt{x}$ in Q 1
6) $f(x)=1+\sqrt[3]{x}$ bounded by $x=0, x=8, y=0$
