Completing the Square Activity

Goal: Given a quadratic equation in standard form $\left(x^{2}+b x+c\right)$, we will rewrite it in vertex form $\left((x-h)^{2}+k\right)$.

Part 1

We will be working with algebra tiles. The value of the tile is its area...

Area $=\begin{gathered}\mathrm{x}^{2} \text { Tile } \\ \mathrm{x} \cdot \mathrm{x}=\mathrm{x}^{2} \text { units }\end{gathered}$

x Tile
Area $=1 \cdot x=x$ units

Unit Tile
Area $=1 \cdot 1=1$ unit

Example

$$
x^{2}+6 x+9
$$

1: Create a partial square with the algebra tiles to represent $x^{2}+2 x+$ \qquad .

$>$ How many unit tiles do you need to complete the square?
$>$ What are the dimensions of the completed square?
$\mathrm{L}=$

$$
\mathrm{W}=
$$

$>$ Replace c and h with numbers to make the statement true:

$$
x^{2}+2 x+c=(x-h)^{2}
$$

2: Create a partial square with the algebra tiles to represent $x^{2}+4 x+$ \qquad .

$>$ How many unit tiles do you need to complete the square?
$>$ What are the dimensions of the completed square?
$\mathrm{L}=$
$\mathrm{W}=$
$>$ Replace c and h with numbers to make the statement true:
$x^{2}+4 x+c=(x-h)^{2}$

3: Create a partial square with the algebra tiles to represent $x^{2}-6 x+$ \qquad .

> How many unit tiles do you need to complete the square?
$>$ What are the dimensions of the completed square? $\mathrm{L}=\quad \mathrm{W}=$
$>$ Replace c and h with numbers to make the statement true:

$$
x^{2}-6 x+c=(x-h)^{2}
$$

4. What is the relationship between the coefficient of x and the number of x 's you have down one side of your algebra tile diagram?
5. What is the relationship between the number of x 's down one side of the algebra tile diagram and the h in your perfect square?
6. What is the relationship between the coefficient of the x and the h in your perfect square?
7. In the expression $y=x^{2}+b x+c$, how do you use b to find the value of c to form a perfect square and the h to rewrite as a perfect square? Use the examples above to explain your answer.
8. Try these problems - Fill in the missing "c" and them rewrite the trinomial as a perfect square binomial.

$x^{2}-10 x+c$	$x^{2}-4 x+c$	$x^{2}+12 x+c$
$x^{2}-12 x+c$	$x^{2}+7 x+c$	$x^{2}+b x+c$

Part 2

Represent each expression using algebra tiles. Try to create a square of tiles. When doing so keep the following rules in mind:

- You may only use ONE x^{2}-tile in each square.
- You must use ALL the x^{2} and x-tiles. Unit tiles are the only ones that can be leftover or borrowed.
- If you need more unit tiles to create a square, you have to "borrow" them. The number you borrow will be a negative quantity.

Standard Form	$\begin{gathered} \text { Number } \\ \text { of } x^{2} \\ \text { Tiles } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } x \\ \text { Tiles } \end{gathered}$	Number of Unit Tiles	Sketch of the Square				Length of the Square	Area of the Square (Length) 2	Unit Tiles Left Over (+) Borrowed (-)	Expression Combining Previous Two Columns
$x^{2}+2 x+3$	1	2	3					x+1	$(x+1)^{2}$	2	$(\mathrm{x}+1)^{2}+2$
$x^{2}+4 x+1$					 						
$x^{2}+6 x+10$											

9. What is the name of the form written in the last column?
10. Convert the following equations from standard form to vertex form by completing the square.

$y=x^{2}-8 x+11$	$y=x^{2}+6 x+1$	$y=x^{2}-2 x-5$
$y=x^{2}+8 x-3$	$y=x^{2}+16 x+14$	$y=x^{2}+2 x-12$
$y=x^{2}+10 x-3$	$y=x^{2}-6 x+2$	$y=x^{2}-12 x+25$
$y=x^{2}-20 x+3$	$y=x^{2}-30 x+200$	$y=x^{2}-3 x-10$

