Algebra 2
Polynomials and Multiplicity of Roots

Name:
Date:
Period:

A graphing calculator or graphing app on a mobile device is required.

Multiplicity of Roots			
1. Graph $y=-\frac{1}{2} x(x-3)(x+2)$.		2. Graph $y=-\frac{1}{2} x^{2}(x-3)(x+2)$.	
Degree:	Sketch the graph.	Degree:	Sketch the graph.
Leading Coefficient:	$\stackrel{*}{*}$	Leading Coefficient:	$\stackrel{\%}{*}$
End Behavior:		End Behavior:	
Roots:		Roots:	
	\downarrow	What did the exponent do to the graph?	\downarrow
3. Graph $y=-\frac{1}{2} x(x-3)^{2}(x+2)$.		4. Graph $y=-\frac{1}{2} x(x-3)(x+2)^{2}$.	
Degree: \quad Sketch the graph.Leading Coefficient:End Behavior:		Degree: Sketch the graph.	
		Leading Coefficient:	
		End Behavior:	
Roots:		Roots:	
What did the exponent do to the graph?		What did the exponent do to the graph?	

Multiplicity refers to the exponent to which a factor is being raised. $(x-3)^{7}$ The root of 3 with multiplicity 3 , or 3 (mult 3).
5. Graph $y=(x+5)(x-7)$.

Degree:
Leading Coefficient:
End Behavior:

Roots (with multiplicity):

What did the exponent do to the graph?
6. Graph $y=(x+5)(x-7)^{3}$.

Degree:
Leading Coefficient:
End Behavior:

Roots (with multiplicity):

What did the exponent do to the graph?
7. Graph $y=(x+5)^{2}(x-7)^{3}$.

Degree:
Leading Coefficient:
End Behavior:

Roots (with multiplicity):

Sketch the graph.

8. Graph $y=(x+5)^{2}(x-7)^{2}$.

Degree:
Leading Coefficient:
End Behavior:

Roots (with multiplicity):

Sketch the graph.

The multiplicity of the roots of a polynomial affects the degree, the leading coefficient, the end behavior, and HOW the graph passes through each root.
\rightarrow When a root has multiplicity of 1 , like $(x+3)$, the curve will pass through the root like a line.
\rightarrow When a root has multiplicity of 2 , like $(x-4)^{2}$, the curve will pass through the root like a parabola.
\rightarrow When a root has multiplicity of 3 , like $(x-1)^{3}$, the curve will pass through the root like a cubic.
Example: Graph $y=-2 x(2 x-7)^{2}(x+4)^{3}$.

Step 1: End behavior	Step 2: Roots (with mult)	Step 3: Plot what you know.	Step 4: Sketch the graph.

Graphing Polynomials HW \#2

For each polynomial function, find the end behavior, leading coefficient, roots (with multiplicity), and sketch the graph.

1. $y=(x+6)^{2}(x+7)$
2. $y=(x+5)(x-2)(x+1)^{2}$
3. $y=x(x-2)^{2}(x+3)^{2}$
4. $y=(x-1)(x+4)^{3}$

Write a possible equation to represent the given graph.
5.

6.

7.

Answers

1. End behavior: $\downarrow \uparrow$

Roots: -6 (mult 2), -7

3. End behavior: $\downarrow \uparrow$

Roots: 0,2 (mult 2), -3 (mult 2)

5. $y=-A x^{2}(x+2)^{2}(x-1)$
2. End behavior: $\uparrow \uparrow$

Roots: -5, 2, -1 (mult 2)

4. End behavior: $\uparrow \uparrow$

Roots: 1, -4 (mult 3)

6. $y=A(x+2)(x+1)^{2}(x-2)^{3}$
7. $y=A x(x+15)(x+10)^{2}(x-10)^{2}(x-15)$

