In Exercises 31–34, find the (x, y) pair for the value of the parameter.

31.
$$x = 3t$$
 and $y = t^2 + 5$ for $t = 2$

32.
$$x = 5t - 7$$
 and $y = 17 - 3t$ for $t = -2$

33.
$$x = t^3 - 4t$$
 and $y = \sqrt{t+1}$ for $t = 3$

34.
$$x = |t + 3|$$
 and $y = 1/t$ for $t = -8$

In Exercises 35–38, complete the following. (a) Find the points determined by t = -3, -2, -1, 0, 1, 2, and 3. (b) Find a direct relationship between y and x and determine whether the parametric equations determine y as a function of x. (c) Graph the relationship in the xy-plane.

35.
$$x = 2t$$
 and $y = 3t - 1$

36.
$$x = t + 1$$
 and $y = t^2 - 2t$

37.
$$x = t^2$$
 and $y = t - 2$

38.
$$x = \sqrt{t}$$
 and $y = 2t - 5$

In Exercises 31–34, find the (x, y) pair for the value of the parameter.

31.
$$x = 3t$$
 and $y = t^2 + 5$ for $t = 2$

32.
$$x = 5t - 7$$
 and $y = 17 - 3t$ for $t = -2$

33.
$$x = t^3 - 4t$$
 and $y = \sqrt{t+1}$ for $t = 3$

34.
$$x = |t + 3|$$
 and $y = 1/t$ for $t = -8$

In Exercises 35–38, complete the following. (a) Find the points determined by t = -3, -2, -1, 0, 1, 2, and 3. (b) Find a direct relationship between y and x and determine whether the parametric equations determine y as a function of x. (c) Graph the relationship in the xy-plane.

35.
$$x = 2t$$
 and $y = 3t - 1$

36.
$$x = t + 1$$
 and $y = t^2 - 2t$

37.
$$x = t^2$$
 and $y = t - 2$ **38.** $x = \sqrt{t}$ and $y = 2t - 5$

In Exercises 31-34, find the (x, y) pair for the value of the parameter.

31.
$$x = 3t$$
 and $y = t^2 + 5$ for $t = 2$

32.
$$x = 5t - 7$$
 and $y = 17 - 3t$ for $t = -2$

33.
$$x = t^3 - 4t$$
 and $y = \sqrt{t+1}$ for $t = 3$

34.
$$x = |t + 3|$$
 and $y = 1/t$ for $t = -8$

In Exercises 35–38, complete the following. (a) Find the points determined by t = -3, -2, -1, 0, 1, 2, and 3. (b) Find a direct relationship between y and x and determine whether the parametric equations determine y as a function of x. (c) Graph the relationship in the xy-plane.

35.
$$x = 2t$$
 and $y = 3t - 1$

36.
$$x = t + 1$$
 and $y = t^2 - 2t$

37.
$$x = t^2$$
 and $y = t - 2$

38.
$$x = \sqrt{t}$$
 and $y = 2t - 5$

In Exercises 31–34, find the (x, y) pair for the value of the parameter.

31.
$$x = 3t$$
 and $y = t^2 + 5$ for $t = 2$

32.
$$x = 5t - 7$$
 and $y = 17 - 3t$ for $t = -2$

33.
$$x = t^3 - 4t$$
 and $y = \sqrt{t+1}$ for $t = 3$

34.
$$x = |t + 3|$$
 and $y = 1/t$ for $t = -8$

In Exercises 35–38, complete the following. (a) Find the points determined by t = -3, -2, -1, 0, 1, 2, and 3. (b) Find a direct relationship between y and x and determine whether the parametric equations determine y as a function of x. (c) Graph the relationship in the xy-plane.

35.
$$x = 2t$$
 and $y = 3t - 1$

36.
$$x = t + 1$$
 and $y = t^2 - 2t$

37.
$$x = t^2$$
 and $y = t - 2$

38.
$$x = Vt$$
 and $y = 2t - 5$