Topic	Notes	Examples
Def of radian	Radian Angle The angle formed by wrapping the radius along the circumference of a circle.	
Degree and Radians	There are 360° degrees in a circle. There are 2π radians in a circle. $360^{\circ}=2 \pi$ which means... $180^{\circ}=\pi$	
Conversion Factors	$\frac{\pi}{180^{\circ}} \text { or } \frac{180^{\circ}}{\pi}$ Which one depends on what you want to cancel.	
How to Deg \Rightarrow Rad	1) Multiply by $\frac{\pi}{180^{\circ}}$ to cancel the deg. 2) Simplify the fraction. Leave the π.	Convert 45° to radians. $45^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{45 \pi}{180}=\frac{\pi}{4}$ Convert -240° to radians. $-240^{\circ} \cdot \frac{\pi}{180^{\circ}}=-\frac{240 \pi}{180}=\frac{4 \pi}{3}$
How to Rad \Rightarrow Deg	1) Multiply by $\frac{180^{\circ}}{\pi}$ to cancel the rad. 2) Simplify the fraction. Usually the π cancels, but not always.	Convert $\frac{-7 \pi}{6}$ to degrees. $\frac{-7 \pi}{6} \cdot \frac{180^{\circ}}{\pi}=-7(30)=-210^{\circ}$ Convert $\frac{3 \pi}{5}$ to degrees. $\frac{3 \pi}{5} \cdot \frac{180^{\circ}}{\pi}=3(36)=108^{\circ}$
Standard Position of an Angle	The initial side is on the x -axis. Rotate the terminal side counter-clockwise for positive angles. Rotate the terminal side clockwise for negative angles.	

