

Polynomial, Power, and **Rational Functions**

Section 2.1 Linear and Quadratic Functions and Modeling

Exploration 1

- 1. -\$2000 per year
- 2. The equation will have the form v(t) = mt + b. The value of the building after 0 year is v(0) = m(0) + b = b = 50,000.

The slope m is the rate of change, which is -2000 (dollars per year). So an equation for the value of the building (in dollars) as a function of the time (in years) is v(t) = -2000t + 50,000.

- 3. v(0) = 50,000 and v(16) = -2000(16) + 50,000 = 18,000
- 4. The equation v(t) = 39,000 becomes -2000t + 50,000 = 39,000-2000t = -11,000t = 5.5

Quick Review 2.1

- 1. y = 8x + 3.6
- 2. y = -1.8x 2
- 3. $y 4 = -\frac{3}{5}(x + 2)$, or y = -0.6x + 2.8

4. $y - 5 = \frac{8}{3}(x - 1)$, or $y = \frac{8}{3}x + \frac{7}{3}$

- 5. $(x + 3)^2 = (x + 3)(x + 3) = x^2 + 3x + 3x + 9$ $= x^2 + 6x + 9$
- 6. $(x-4)^2 = (x-4)(x-4) = x^2 4x 4x + 16$ $= x^2 - 8x + 16$

7.
$$3(x-6)^2 = 3(x-6)(x-6) = (3x-18)(x-6)$$

= $3x^2 - 18x - 18x + 108 = 3x^2 - 36x + 108$

$$8. -3(x + 7)^2 = -3(x + 7)(x + 7)$$

$$= (-3x - 21)(x + 7) = -3x^2 - 21x - 21x - 147$$

$$= -3x^2 - 42x - 147$$

$$= -3x - 42x - 177$$
9. $2x^2 - 4x + 2 = 2(x^2 - 2x + 1) = 2(x - 1)(x - 1)$

$$= 2(x - 1)^2$$

$$= 2(x-1)^{2}$$
10. $3x^{2} + 12x + 12 = 3(x^{2} + 4x + 4) = 3(x+2)(x+2)$

$$= 3(x+2)^{2}$$

Section 2.1 Exercises

- **1.** Not a polynomial function because of the exponent -5.
- 2. Polynomial of degree 1 with leading coefficient 2.
- 3. Polynomial of degree 5 with leading coefficient 2.
- 4. Polynomial of degree 0 with leading coefficient 13.
- 5. Not a polynomial function because of cube root.
- 6. Polynomial of degree 2 with leading coefficient -5.

7.
$$m = \frac{5}{7}$$
 so $y - 4 = \frac{5}{7}(x - 2) \Rightarrow f(x) = \frac{5}{7}x + \frac{18}{7}$

9.
$$m = -\frac{4}{3}$$
 so $y - 6 = -\frac{4}{3}(x + 4) \Rightarrow f(x) = -\frac{4}{3}x + \frac{2}{3}$

10.
$$m = \frac{5}{4}$$
 so $y - 2 = \frac{5}{4}(x - 1) \Rightarrow f(x) = \frac{5}{4}x + \frac{3}{4}$

11.
$$m = -1$$
 so $y - 3 = -1(x - 0) \Rightarrow f(x) = -x + 3$

12.
$$m = \frac{1}{2}$$
 so $y - 2 = \frac{1}{2}(x - 0) \Rightarrow f(x) = \frac{1}{2}x + 2$

- 13. (a)—the vertex is at (-1, -3), in quadrant III, eliminating all but (a) and (d). Since f(0) = -1, it must be (a).
- 14. (d)—the vertex is at (-2, -7), in quadrant III, eliminating all but (a) and (d). Since f(0) = 5, it must be (d).
- 15. (b)—the vertex is in quadrant I, at (1, 4), meaning it must be either (b) or (f). Since f(0) = 1, it cannot be (f): if the vertex in (f) is (1, 4), then the intersection with the y-axis would be about (0, 3). It must be (b).
- 16. (f)—the vertex is in quadrant I, at (1, 12), meaning it must be either (b) or (f). Since f(0) = 10, it cannot be (b): if the vertex in (b) is (1, 12), then the intersection with the y-axis occurs considerably lower than (0, 10). It must be (f).
- 17. (e)—the vertex is at (1, -3) in Quadrant IV. So it must be (e).
- 18. (c)—the vertex is at (-1, 12) in Quadrant II and the parabola opens down, so it must be (c).

19. Translate the graph of $f(x) = x^2$ 3 units right to obtain the graph of $h(x) = (x - 3)^2$, and translate this graph 2 units down to obtain the graph of $g(x) = (x - 3)^2$

20. Vertically shrink the graph of $f(x) = x^2$ by a factor of $\frac{1}{4}$ to obtain the graph of $g(x) = \frac{1}{4}x^2$, and translate this graph 1 unit down to obtain the graph of $h(x) = \frac{1}{4}x^2$

21. Translate the graph of $f(x) = x^2 2$ units left to obtain the graph of $h(x) = (x + 2)^2$, vertically shrink this graph the a factor of $\frac{1}{2}$ to obtain the graph of $k(x) = \frac{1}{2}(x + 2)^2$ and translate this graph 3 units down to obtain the graph of $g(x) = \frac{1}{2}(x + 2)^2 - 3$.

22. Vertically stretch the graph of $f(x) = x^2$ by a factor of to obtain the graph of $g(x) = 3x^2$, reflect this graph across the x-axis to obtain the graph of $k(x) = -3x^2$, translate this graph up 2 units to obtain the graph of $h(x) = -3x^2 + 2.1$

For #23-32, with an equation of the form $f(x) = a(x - h)^2 + k$, the vertex is (h, k) and the axis is x = h.

- **23.** Vertex: (1, 5); axis: x = 1
- **24.** Vertex: (-2, -1); axis: x = -2
- **25.** Vertex: (1, -7); axis: x = 1
- **26.** Vertex: $(\sqrt{3}, 4)$; axis: $x = \sqrt{3}$

27.
$$f(x) = 3\left(x^2 + \frac{5}{3}x\right) - 4$$

= $3\left(x^2 + 2 \cdot \frac{5}{6}x + \frac{25}{36}\right) - 4 - \frac{25}{12} = 3\left(x + \frac{5}{6}\right)^2 - \frac{73}{12}$
Vertex: $\left(-\frac{5}{6}, -\frac{73}{12}\right)$; axis: $x = -\frac{5}{6}$

28.
$$f(x) = -2\left(x^2 - \frac{7}{2}x\right) - 3$$

 $= -2\left(x^2 - 2 \cdot \frac{7}{4}x + \frac{49}{16}\right) - 3 + \frac{49}{8}$
 $= -2\left(x - \frac{7}{4}\right)^2 + \frac{25}{8}$

Vertex:
$$\left(\frac{7}{4}, \frac{25}{8}\right)$$
; axis: $x = \frac{7}{4}$
29. $f(x) = -(x^2 - 8x) + 3$

29.
$$f(x) = -(x^2 - 8x) + 3$$

= $-(x^2 - 2 \cdot 4x + 16) + 3 + 16 = -(x - 4)^2 + 19$
Vertex: (4, 19); axis: $x = 4$

30.
$$f(x) = 4\left(x^2 - \frac{1}{2}x\right) + 6$$

= $4\left(x^2 - 2 \cdot \frac{1}{4}x + \frac{1}{16}\right) + 6 - \frac{1}{4} = 4\left(x - \frac{1}{4}\right)^2 + \frac{23}{4}$

31.
$$g(x) = 5\left(x^2 - \frac{6}{5}x\right) + 4$$

= $5\left(x^2 - 2 \cdot \frac{3}{5}x + \frac{9}{25}\right) + 4 - \frac{9}{5} = 5\left(x - \frac{3}{5}\right)^2 + \frac{11}{5}$

32.
$$h(x) = -2\left(x^2 + \frac{7}{2}x\right) - 4$$

= $-2\left(x^2 + 2 \cdot \frac{7}{4}x + \frac{49}{16}\right) - 4 + \frac{49}{8}$
= $-2\left(x + \frac{7}{4}\right)^2 + \frac{17}{8}$

Vertex: (-1.75, 2.125); axis: x = -1.75

33.
$$f(x) = (x^2 - 4x + 4) + 6 - 4 = (x - 2)^2 + 2$$
.
Vertex: (2, 2); axis: $x = 2$; opens upward; does not intersect x-axis.

34.
$$g(x) = (x^2 - 6x + 9) + 12 - 9 = (x - 3)^2 + 3$$
.
Vertex: (3, 3); axis: $x = 3$; opens upward; does not intersect x-axis.

35. $f(x) = -(x^2 + 16x) + 10$ = $-(x^2 + 16x + 64) + 10 + 64 = -(x + 8)^2 + 74$. Vertex: (-8, 74); axis: x = -8; opens downward; intersects x-axis at about -16.602 and $0.602(-8 \pm \sqrt{74})$.

36.
$$h(x) = -(x^2 - 2x) + 8 = -(x^2 - 2x + 1) + 8 + 1$$

= $-(x - 1)^2 + 9$

Vertex: (1, 9); axis: x = 1; opens downward; intersects x-axis at -2 and 4.

37.
$$f(x) = 2(x^2 + 3x) + 7$$

= $2\left(x^2 + 3x + \frac{9}{4}\right) + 7 - \frac{9}{2} = 2\left(x + \frac{3}{2}\right)^2 + \frac{5}{2}$

Vertex: $\left(-\frac{3}{2}, \frac{5}{2}\right)$; $x = -\frac{3}{2}$; opens upward; does not intersect the x-axis; vertically stretched by 2.

38.
$$g(x) = 5(x^2 - 5x) + 12$$

= $5\left(x^2 - 5x + \frac{25}{4}\right) + 12 - \frac{125}{4}$
= $5\left(x - \frac{5}{2}\right)^2 - \frac{77}{4}$

Vertex: (2.5, -19.25); axis: x = 2.5; opens upward; intersects x-axis at about 0.538 and

$$4.462 \left(\text{ or } 2.5 \pm \frac{1}{10} \sqrt{385} \right)$$
; vertically stretched by 5.

For #39-44, use the form $y = a(x - h)^2 + k$, taking the vertex (h, k) from the graph or other given information.

- 39. h = -1 and k = -3, so $y = a(x + 1)^2 3$. Now substitute x = 1, y = 5 to obtain 5 = 4a 3, so a = 2: $y = 2(x + 1)^2 3$.
- **40.** h = 2 and k = -7, so $y = a(x 2)^2 7$. Now substitute x = 0, y = 5 to obtain 5 = 4a 7, so a = 3: $y = 3(x 2)^2 7$.
- **41.** h = 1 and k = 11, so $y = a(x 1)^2 + 11$. Now substitute x = 4, y = -7 to obtain -7 = 9a + 11, so a = -2: $y = -2(x 1)^2 + 11$.
- **42.** h = -1 and k = 5, so $y = a(x + 1)^2 + 5$. Now substitute x = 2, y = -13 to obtain -13 = 9a + 5, so a = -2: $y = -2(x + 1)^2 + 5$.
- **43.** h = 1 and k = 3, so $y = a(x 1)^2 + 3$. Now substitute x = 0, y = 5 to obtain 5 = a + 3, so a = 2: $y = 2(x 1)^2 + 3$.
- **44.** h = -2 and k = -5, so $y = a(x + 2)^2 5$. Now substitute x = -4, y = -27 to obtain -27 = 4a 5, so $a = -\frac{11}{2}$: $y = -\frac{11}{2}(x + 2)^2 5$.
- 45. Strong positive
- 46. Strong negative
- 47. Weak positive
- 48. No correlation

(b) Strong positive

(b) Strong negative

51.
$$m = -\frac{2350}{5} = -470$$
 and $b = 2350$,
so $v(t) = -470t + 2350$.
At $t = 3$, $v(3) = (-470)(3) + 2350 = 940 .

- 52. Let x be the number of dolls produced each week and y be the average weekly costs. Then m = 4.70, and b = 350, so y = 4.70x + 350, or 500 = 4.70x + 350: x = 32, 32 dolls are produced each week.
- 53. (a) $y \approx 16.395x + 196.888$. The slope, $m \approx 16.395$, represents an increase in y (dollars) for an increase by 1 in the value of x (years). In other words, the slope represents the typical annual increase in weekly earnings.
 - **(b)** Setting x = 35 in the regression equation leads to $y \approx 771 .

- **54.** If the length is x, then the width is 50 x, so A(x) = x(50 x); maximum of 625 ft² when x = 25 (the dimensions are 25 ft \times 25 ft).
- 55. (a) [0, 100] by [0, 1000] is one possibility.
 - **(b)** When $x \approx 107.335$ or $x \approx 372.665$ either 107, 335 units or 372, 665 units.
- 56. The area of the picture and the frame, if the width of the picture is x ft, is A(x) = (x + 2)(x + 5) ft². This equals 208 when x = 11, so the painting is 11 ft \times 14 ft.
- 57. If the strip is x feet wide, the area of the strip is $A(x) = (25 + 2x)(40 + 2x) 1000 \text{ ft}^2$. This equals 504 ft² when x = 3.5 ft.
- **58.** (a) R(x) = (800 + 20x)(300 5x).
 - **(b)** [0, 25] by [200,000, 260,000] is one possibility (shown).

- (c) The maximum income \$250,000 is achieved when x = 10, corresponding to rent of \$250 per month.
- **59.** (a) R(x) = (26,000 1000x)(0.50 + 0.05x).
 - (b) Many choices of Xmax and Ymin are reasonable. Shown is [0, 15] by [10,000, 17,000].

- (c) The maximum revenue \$16,200 is achieved when x = 8; that is, charging 90 cents per can.
- 60. Total sales would be S(x) = (30 + x)(50 x) thousand dollars, when x additional salespeople are hired. The maximum occurs when x = 10 (halfway between the two zeros, at -30 and 50).
- **61.** (a) $h = -16t^2 + 48t + 3.5$.
 - (b) The graph is shown in the window [0, 3.5] by [0, 45]. The maximum height is 39.5 ft, 1.5 sec after it is thrown.

62. (a) $h = -16t^2 + 80t - 10$. The graph is shown in the window [0, 5] by [-10, 100].

- (b) The maximum height is 90 ft, 2.5 sec after it is shot.
- 63. The exact answer is $32\sqrt{3}$, or about 55.426 ft/sec. In addition to the guess-and-check strategy suggested, this can be found algebraically by noting that the vertex of the parabola $y = ax^2 + bx + c$ has y coordinate $c \frac{b^2}{4a} = \frac{b^2}{64}$ (note a = -16 and c = 0), and setting
- 64. $y \approx 0.369x^2 + 1.487x + 113.602$ where x = the number of years after 1980. Solving the equation $0.369x^2 + 1.487x + 113.602 = 350$ graphically, y = 350 when $x \approx 23.4$. Patent applications will reach 350,000 in the year 2003.
- **65.** (a) $m = \frac{6 \text{ ft}}{100 \text{ ft}} = 0.06$
 - **(b)** $r \approx 4167$ ft, or about 0.79 mile.
 - (c) 2217.6 ft
- 66. (a)

- **(b)** $y \approx 0.68x + 9.01$
- (c) On average, the children gain 0.68 pound per month.

- (e) $\approx 29.41 \text{ lbs}$
- 67. (a)

 [0, 15] by [0, 10]
 - **(b)** $y \approx 0.345x + 0.469$, where x = number of years after 1990 in which the season started.

(c) Players' average salaries are increasing by about \$0.345 million = \$345,000 annually.

- (e) When x = 15, y equals approximately \$5.6 million = \$5,600,000 annually.
- **68.** The Identity Function f(x) = x

[+.1, +.1] by [-3.1, 3.1

Domain: $(-\infty, \infty)$ Range: $(-\infty, \infty)$

Continuity: The function is continuous on its domain.

Increasing-decreasing behavior: increasing for all x

Symmetry: Symmetric about the origin

Boundedness: Not bounded

Local extrema: None

Horizontal asymptotes: None

Vertical asymptotes: None.

End behavior: $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = \infty$

69. The Squaring Function $f(x) = x^2$

[-4.7, 4.7] by [-1, 5]

Domain: $(-\infty, \infty)$

Range: $[0, \infty)$

Continuity: The function is continuous on its domain.

Increasing–decreasing behavior: increasing on $[0, \infty)$,

decreasing on $(-\infty, 0]$.

Symmetry: Symmetric about the y-axis

Boundedness: Bounded below, but not above

Local extrema: Local minimum of 0 at x = 0

Horizontal asymptotes: None

Vertical asymptotes: None

End behavior: $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \infty$

70. False. For $f(x) = 3x^2 + 2x - 3$, the initial value is f(0) = -3.